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Advanced Automatic Collision Notification Educational Outline 
Core Components & Course Elements 
 
Target Audience: 
Medical directors, EMS/911 directors, and decision-makers who will influence or make the 
recommendation to implement Advanced Automatic Collision Notification (AACN) into their local 
field trauma triage and dispatch protocols. 
 
Goal:   
To educate participants about AACN data, both the science of crash kinematics and resulting 
injury severity scores, and future opportunities for AACN to help to reduce mortality and 
morbidity rates by optimizing the use of EMS resources and improving the triage and treatment 
of seriously injured crash victims.   
 
Course Objectives: 
After taking this course, participants will understand what AACN is and the kind of information it 
can provide about a collision; the current CDC field triage decision scheme and where AACN 
fits in; the science and current/ongoing research behind AACN; and identify necessary steps 
and cultural barriers in the development and implementation of AACN protocols.  
 
About the Recommended Course Sections: 
The following sections are recommended; it is suggested that the course be taught in the order 
below.  
 
Essential Course Elements:  
1. AACN 
2. Evidence-Based Research and Resources 
3. CDC Recommendations 
4. Implementation 
5. Future of AACN 
 
Course Outline 
1. Advanced Automatic Collision Notification (AACN) 

a. Understand the history of ACN and how it is different from AACN.  
b. Discuss the range of vehicle telemetry data available today (including data from the 

major telematics providers, i.e., OnStar, Agero) and understand the data points with the 
best predictability (Delta V; principle direction of force, seatbelt usage/or without, crash 
with multiple impacts, vehicle type). 

c. Understand the application of AACN and its ability to predict injuries, and the correlation 
of crash kinematics to occupant injury. 

d. Understand how the urgency algorithm calculates the probability of severe injury using 
vehicle telematics data.  

e. Understand the expected benefits for patients and EMS. 
 
Section Notes:  
It’s important for participants to understand the scope of AACN and its current and anticipated 
use in the EMS system. Medical directors will be interested in the science behind telematics 
predicting a serious injury, and the strengths and weaknesses of this information. Participants 
will want to know how reliable it is, the science behind it, strengths/weaknesses, and how to 
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apply and interpret it. There is a need for education on these data points and to show how the 
information will be used in the dispatch and triage process using visual examples and scenarios.  
 
2. Evidence-Based Research and Resources 

a. Identify research being done, the researchers and organizations involved in pilot testing, 
and when the research will be completed and/or the results available.  

b. Understand the validity and limitations of the research currently being done. 
c. Describe the partnerships between response agencies and organizations involved in the 

development of AACN; identify leaders and organizations that are working the issues 
and know what resources are available and who to look to for guidance. 

 
Section Notes:  
Participants will need to know what published literature explains this approach, what is known, 
what is not known, and what is currently being done. Medical directors will want hard evidence 
and to know what available evidence there is now, including data on crash reconstruction. This 
is also important because medical directors feel that EMS in the past has adopted technologies 
without sound evidence, that later have been proven to be ineffective or even harmful.  
 
3. Centers for Disease Control and Prevention (CDC) Recommendations 

a. Understand the field triage decision scheme and why it was created.  
b. Understand the CDC’s recommendations from their expert panel on AACN. 
c. Discuss anticipated enhancements and updates.  

 
Section Notes: 
It is anticipated that participants will have a firm understanding of field triage. The CDC’s work 
on AACN has revolved around their recommendation for including the use of AACN data in their 
field triage protocol to improve the accuracy of triage. It is important for participants to 
understand the history behind the CDC's recommendations, why the recommendations were 
made, and how AACN fits into the bigger picture of field trauma triage. The CDC is the federal 
agency that has taken the lead on reviewing the available research and convened an expert 
panel to make a recommendation.  
 
The field triage protocol is periodically updated, and as new research about AACN is considered 
the CDC will incorporate it into its process and recommendations for medical directors across 
the country.  
 
4. Implementation 

a. Describe the communication, roles, and decision-making between response agencies 
and organizations in the use of AACN. 

b. Identify points on the patient care continuum where AACN will offer benefits. 
c. Understand how AACN enhances the current dispatch system(s). 
d. Understand how AACN enhances the current field trauma triage system to assist injured 

patients. 
e. Understand how AACN enhances the assessment of trauma patients at a trauma center. 
f. Identify and understand the cultural factors that will affect AACN implementation. 

 
Section Notes:  
Participants need to know how this additional data can be used by EMS providers to determine 
the quantity and type of rescue equipment to be dispatched, how AACN will enhance the current 
dispatch and field triage systems, and how it will help assessment at the trauma center to 
realize improved patient outcomes and cost savings. This is critical to determining how best to 
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implement AACN into local protocols and the continuum of care. If appropriate case studies are 
available from EMS systems, this information should be added to the course. 
 
5. Future of AACN 

a. Understand how AACN works when provided by third-party vendors, i.e., auto 
manufacturers. 

b. Discuss direct transmission from auto to communication center. 
c. Recognize the key benefits and improvement using AACN in a digital and data-rich 

environment. 
d. Understand who the key stakeholders are in developing and implementing protocols 

using AACN data. 
 
Section Notes:  
The implementation of AACN across the country will be done in phases as technology changes 
in dispatch centers. How it gets implemented will depend on local resources. Participants will 
understand that as technology advances, AACN will offer richer data to improve patient 
outcomes and will become more efficient and quicker. As technological advances are made, key 
stakeholders will need to collaborate to implement protocols using AACN data across the 
continuum of care. 
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a b s t r a c t

A multivariate logistic regression model, based upon National Automotive Sampling System Crashwor-
thiness Data System (NASS-CDS) data for calendar years 1999–2008, was developed to predict the
probability that a crash-involved vehicle will contain one or more occupants with serious or incapac-
itating injuries. These vehicles were defined as containing at least one occupant coded with an Injury
Severity Score (ISS) of greater than or equal to 15, in planar, non-rollover crash events involving Model
Year 2000 and newer cars, light trucks, and vans. The target injury outcome measure was developed by
the Centers for Disease Control and Prevention (CDC)-led National Expert Panel on Field Triage in their
recent revision of the Field Triage Decision Scheme (American College of Surgeons, 2006). The parameters
to be used for crash injury prediction were subsequently specified by the National Expert Panel. Model
input parameters included: crash direction (front, left, right, and rear), change in velocity (delta-V), mul-
tiple vs. single impacts, belt use, presence of at least one older occupant (≥55 years old), presence of at
least one female in the vehicle, and vehicle type (car, pickup truck, van, and sport utility). The model
was developed using predictor variables that may be readily available, post-crash, from OnStar®-like
telematics systems. Model sensitivity and specificity were 40% and 98%, respectively, using a probability
cutpoint of 0.20. The area under the receiver operator characteristic (ROC) curve for the final model was
0.84. Delta-V (mph), seat belt use and crash direction were the most important predictors of serious
injury. Due to the complexity of factors associated with rollover-related injuries, a separate screening
algorithm is needed to model injuries associated with this crash mode.

© 2010 Elsevier Ltd. All rights reserved.

1. Background

Models for identifying and predicting the potential severity of
occupant injuries associated with highway crashes can be used
to both direct appropriate first responder resources to the crash
scene and provide critical information to emergency trauma cen-
ters to facilitate appropriate preparations for receipt of transported
seriously injured occupants (Bahouth et al., 2004). Modern telem-
atics communications systems available to vehicle owners (e.g.,
OnStar®) can provide immediate information about the nature and
severity of a motor vehicle collision. This information can serve as
input to predictive models designed to classify a crash as a high
injury probability event or a low injury probability event. Some of
the information immediately available to telematics systems from
Event Data Recorders (EDRs) in modern vehicles may include: prin-

∗ Corresponding author. Tel.: +1 586 899 5510.
E-mail addresses: douglas.w.kononen@gm.com, kononend@aol.com

(D.W. Kononen).

cipal direction of impact force (PDOF), the total change in vehicle
velocity during the event (delta-V), seat belt use status of occupants
and frontal or side airbag deployment. This information, when
coupled with vehicle information derived from the vehicle iden-
tification number (VIN) (e.g., vehicle type and weight) and voice
contact with vehicle occupants, when available, can serve as the
basis for targeted allocations of first responder services to ensure
that appropriately equipped and trained Emergency Management
Services (EMS) are dispatched to the crash scene.

Since automatic collision notification (ACN) is relatively new,
only a few studies have been published. Augenstein et al. (2007) dis-
cuss some of the predictors of crash outcome that can be measured
by the EDR, including crash direction and delta-V. They illustrate
the relationship between these variables and crash outcome and
discuss the benefit of both ACN and the potential for more extensive
crash data from EDR reports. Rauscher et al. (2009) report on the
first field experience with an ACN system that transmits geographic
coordinates of the crashed vehicle. This report focuses primarily on
the types of voice contact (or lack thereof) that are made after notifi-
cation, but it includes some information about outcome. These data

0001-4575/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aap.2010.07.018
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provide a starting point for learning about the potential benefits of
ACN, especially when no voice contact can be made.

In 2008, the Centers for Disease Control (CDC) published the rec-
ommendations of National Expert Panel on Field Triage. In the new
Field Triage Decision Scheme (Sasser et al., 2009), “vehicle telemat-
ics” was added to the list of crash-related information to consider
in determining whether to transport an occupant to a hospital. At
that time, the specifics of how to use vehicle telematics were not
addressed, but the expert panel made several recommendations
related to future use of such information.

In this paper, we present an algorithm for predicting risk of seri-
ous injury in a vehicle as a function of crash parameters that can
be obtained from the EDR or from voice communication with the
vehicle. The algorithm was developed for OnStar®, and in some
instances, modeling choices were made based on the capabilities
of the OnStar® system. However, the model as a whole is applicable
to all vehicle makes and models. Moreover, the algorithm follows
the recommendations of the expert panel and is based on publically
available national crash data.

The objective of this modeling effort was to develop a statisti-
cal model to predict the risk of serious injury using outcome and
predictor variables identified by the CDC National Expert Panel on
Field Triage based on an analysis of planar motor vehicle crashes
recorded in the 1999–2008 National Automotvie Sampling System
(NASS-CDS) database files for model year 2000 and newer vehicles.
The model will be incorporated into the existing OnStar® response-
center system to help identify crashes that have high potential to
result in severe injuries.

2. Data and methods

Data from the National Automotive Sampling System (NASS)
Crashworthiness Data System (CDS), years 1999–2008, were used
to develop and validate a multivariate logistic regression model of
serious injury as a function of those predictor variables that may
be readily transmitted from Event Data Recorder (EDR) modules to
the OnStar® system. The NASS-CDS database is a complex strat-
ified sample of crashes in the United States (National Highway
Traffic Safety Administration, 2007). A NASS-CDS crash must: (1)
be police reported, (2) involve a harmful event (property damage
and/or personal injury) resulting from a crash and (3) involve at
least one towed passenger car or light truck or van in transport on
a trafficway.

From a practical perspective, this modeling effort was restricted
to using only those variables that can be immediately and
accurately obtained via telematic transmission (i.e., EDR data) sup-
plemented with information obtained from voice communication
with crash-involved vehicle occupants, if available. This constraint
on potentially significant explanatory variables was imposed to
reflect the current state of information available from current vehi-
cle telematic systems.

Most predictive models of occupant injury outcome of which
we are aware focus on the occupant level (e.g., Bahouth et al., 2004;
Augenstein et al., 2007). However, in the scenarios being considered
here, a vehicle’s telematic system would make the initial contact
and Emergency Medical Services (EMS) would respond to the vehi-
cle/crash as a whole. Thus, the models in this paper are designed
to predict which vehicles involved in a crash are likely to contain
a seriously injured occupant, and all modeling is done at the vehi-
cle level. Occupant information available to the EDR, as well as any
gathered from voice contact, is coded to the vehicle level. Methods
for this are discussed in the sections describing each predictor.

Although with many systems (including OnStar at this time),
EDR-based occupant information may only be available for front-
seat occupants, we included the maximum injury of any passenger

in a vehicle. In this way, the model represents the current state of
information available to the EDR, but predicts the complete range of
vehicles and their occupants. As rear-seat information (occupancy
and belt use) becomes available, prediction may improve. How-
ever, it is worth noting that the most severely injured occupant is a
rear-seat occupant in only 3.5% of vehicles in NASS-CDS, so future
information about rear-seat occupant presence and belt use may
provide limited additional predictive value.

Published models of serious injury associated with motor vehi-
cle crashes are often based upon an injury outcome criterion such
as MAIS3+ (Bahouth et al., 2004; Farmer, 2003). For the purposes of
this study, Injury Severity Score (ISS) was considered a better, more
clinically reliable indicator of severe injury than indices based upon
the score attributed to a single (presumably most severe) coded
injury using the Abbreviated Injury Scale (AIS) injury coding sys-
tem (e.g., MAIS3+). Because the ISS score, defined as the sum of the
squares of the AIS severity level of the three most significant coded
occupant injuries, captures a larger portion of an injured occu-
pant’s “harm profile”, it is thought to provide a better, more realistic
assessment of occupant harm than does a simpler univariate score
such as MAIS3+. While there are many ways to dichotomize the
severity of injuries, the National Expert Panel chose ISS of 15 as the
partition during their revision of the Field Triage Decision Scheme
(Sasser et al., 2009). The National Expert Panel also chose a 20%
probability of ISS 15 or greater as the threshold for considering
individual triage criterion for inclusion in the Field Triage Decision
Scheme. Thus, the dependent measure for this study is the binary
variable, ISS 15+, indicating whether any occupant of a vehicle
experienced an injury of ISS 15+ or not.

The final sets of data exclusions were related to the nature of
the vehicles that contain EDRs. Although EDRs have been intro-
duced slowly by manufacturer and model, they were generally not
available before model year 2000. In addition, we limited our sam-
ple to planar collisions (i.e., excluding rollovers and the rare crashes
coded with the primary general area of damage as top or bottom)
and passenger vehicles. Finally, cases with weights of 5000 and
up were trimmed (excluded) to improve standard errors (Little et
al., 1997; Potter, 1990). Previous experience using the NASS–CDS
complex survey data indicate that cases with weights greater than
5000 are usually extreme outliers that often exert a large influence
on resulting model parameter estimates and their standard errors.
Cases with such large weighting factors are very rare and readily
identified. Our analyses with and without these influential cases
demonstrated that a single case with a weight of 5000 or greater can
dramatically change some model parameter estimates and their
standard errors. Therefore, these cases were excluded from subse-
quent analyses. The resulting dataset contained 14,673 vehicles. Of
these, 1212 (8.3%) contained one or more occupants with ISS 15+
injuries.

The CDC National Expert Panel on Field Triage recommended
the following variables as predictors of serious occupant injury risk
(ISS 15+): delta-V, principal direction of force (front, left, right, rear),
seat belt restraint use (yes vs. no), vehicle type (car, sport utility,
pickup, passenger van) and multiple vs. single crash events. In addi-
tion, information about occupant age and gender may be obtained
if verbal contact is made by an OnStar operator or EMS dispatcher.

The following section describes each predictor variable in detail.

2.1. Delta-V

Delta-V is the change in vehicle velocity associated with the
primary direction of force of the crash event. In the NASS-CDS
database, delta-V is defined as the difference between Impact
Velocity and Separation Velocity and is calculated by a computer
model (WinSmash) based upon detailed vehicle crush measure-
ments obtained by NASS-CDS crash investigators. Typically, the
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single most significant predictor of serious injury is the measure of
crash energy captured by delta-V. Older EDRs can only measure lon-
gitudinal delta-V, which is of limited value. However, newer EDRs,
include both lateral and longitudinal delta-V, which also allows
computation of crash direction. The model we present is relevant
only to bi-directional EDR data. Prior to analysis, delta-V values
were converted from kph to mph.

2.2. Crash direction

Crash direction refers to the principal direction of force (PDOF)
associated with the primary crash event as identified by NASS-
CDS crash investigators. Crash direction was constrained to planar
crashes using the “1–12 o’clock” PDOF direction variable. Frontal
crashes are defined as those with PDOF of 11, 12 or 1 o’clock, right
side are those from 2 to 4 o’clock, rear from 5 to 7 o’clock, and
left from 8 to 10 o’clock. Similar information is available from EDR
data when two axes of acceleration are captured. Of the vehicles in
the study set, 69.2% were vehicles that experienced frontal crashes,
9.7% were right impacts, 9.2% were left impacts and 12.0% were rear
crashes.

Previous efforts to model the injury severity of occupants
using NASS-CDS data (Augenstein et al., 2007; Bahouth et al.,
2004) included rollovers with planar crashes. Among the mea-
surements provided by the EDR, delta-V is generally found to be
most predictive of injury. However, in rollover crashes, delta-V is of
questionable value since current automotive technologies can only
reliably capture delta-V information for planar crashes. Consulta-
tions with vehicle crash engineers and biomechanical engineers
indicated that delta-V information provided by current generation
EDRs is expected to be of limited or no value in predicting occupant
injuries associated with rollover events. Our preliminary evalua-
tions indicated that injury risk predictions for rollover events need
to be determined using a separate algorithm for rollover crashes
using those variables that have previously been found to be most
important in predicting occupant injury outcomes in that crash
mode (i.e., belt restraint use and occupant ejection status). Thus,
we did not include rollover events in this first effort.

2.3. Vehicle type

Vehicle type in this study refers to the NHTSA standard defini-
tions of light truck and passenger cars as defined in the NASS-CDS
coding and editing manual (NHTSA, 2007): passenger cars, passen-
ger vans, pickup trucks and sport utility vehicles (SUVs). The body
type variable was used with the following specific codes: 0–9 are
cars, 14–19 are SUVs, 20–29 are vans, and 30–33 are pickups. All
other vehicles were eliminated, but these comprise only 0.3% of
the entire NASS-CDS sample. Of the vehicles included in this study,
64% were passenger cars, 18% were sport utility vehicles, 12% were
pickup trucks and 6% were passenger vans or minivans.

2.4. Belt restraint use

Belt restraint use refers to NASS-CDS-identified occupant seat
belt restraint use. To code at the vehicle level, we initially set up two
variables, one for the driver and one for the right-front passenger.
Two codes were used for the driver, based on the NASS-CDS coding
manual and automatic belt-use variables: “belted” and “unbelted.”
For the right-front passenger, a third code of “no RFP” was added to
distinguish the case where the belt buckle was not attached because
there was no passenger vs. the case where a passenger was present
but unbelted. In our sample, 84% of drivers were belted, 71% of
vehicles had no RFP, 23% had a belted RFP, and 5% had an unbelted
RFP.

After initial analyses of injury outcome using these variables, we
discovered an interaction between driver and passenger belt status
such that vehicles with multiple unbelted passengers did not have
substantially higher risk of containing at least one seriously injured
occupant compared to vehicles with one unbelted occupant. Vehi-
cles with all front passengers belted were significantly less likely to
have a seriously injured occupant in a crash. Because of this result,
we simplified our belt-use code to indicate at the vehicle level: “all
occupants belted” vs. “at least one occupant unbelted.” In coding
vehicles in this way, we did not consider the belt status of rear-
seat passengers because current EDRs do not sense the presence or
belt status of rear-seat occupants. Future models may incorporate
this effect, but as mentioned earlier, the most injured occupant in
a vehicle is rarely a rear-seat occupant, so the belt status of those
in the rear is unlikely to be a strong predictor of the most serious
injury in a vehicle (though it would predict the risk to the rear-seat
occupant).

2.5. Multiple impacts

The occurrence of more than one significant impact to a vehi-
cle may be an important explanatory variable in the prediction of
injury outcome. Vehicles experiencing multiple vs. single impacts
were identified from NASS-CDS using the accident sequence vari-
ables, which identify the two crash events that are most relevant
for a given vehicle. Each crash as a whole is divided into events,
which are generally separate impacts (e.g., Vehicle 1 hits Vehicle
2 in the side, sending Vehicle 2 into a tree involves two events).
These impacts may affect different vehicles involved in the crash,
such that some vehicles in a multiple-event crash may only experi-
ence one impact (e.g., Vehicle 1) and others may experience more
than one impact (e.g., Vehicle 2). In NASS-CDS, any vehicle for which
a second accident sequence was identified was coded as “multiple
impacts.” Vehicles with only the first accident sequence variable
present were coded as “single impact.” A typical EDR will record
up to two impacts, as long as they are above a certain threshold for
recording. Thus, the EDR is also capable of distinguishing between
vehicles that experience a single impact and those that experience
at least two impacts. Of the vehicles included in this study, 38%
experienced multiple impacts and 62% experienced single impacts.

2.6. Age and gender

Although the EDR does not have information about age and gen-
der of occupants, it may be possible for an operator (e.g., OnStar®

advisor) to make verbal contact with a vehicle’s occupants after ini-
tial notification in order to gather some additional information. Age
is known to be a strong predictor of injury (MacKenzie et al., 2006;
Champion et al., 1990; Grossman et al., 2002; Morris et al., 1990),
and it is included in the CDC’s triage rules (ACS, 2006; Sasser et
al., 2009). Similarly, females have been shown to be more suscep-
tible to some types of injury than males in motor vehicle crashes
(Sampalis et al., 2009; Schiff et al., 2008; Rowe et al., 2004; Tavris et
al., 2001). These are considered to be two key pieces of information
that an operator might be able to obtain from a crash victim (who
may be distraught or otherwise having difficulty answering simple
questions).

To code these at the vehicle level, we chose an age cutoff of
55 and coded a vehicle as “55+” if anyone in the vehicle is 55 or
older, and “under 55” if all occupants are under 55. This cutoff
was chosen based on the National Expert Panel’s decision to retain
age 55 as a criterion for consideration in the Field Triage Decision
Scheme (Sasser et al., 2009). Similarly, gender was coded as “female
present” at the vehicle level if any occupant is female and “all male”
if all occupants are male. Rear-seat occupants were included in this
coding system because they would presumably be included in the
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answer given by a driver. Of the vehicles in the study dataset, 20%
contained an occupant aged 55 or older and 58% contained a female
occupant.

3. Analysis approach

3.1. Modeling

Logistic regression was conducted using SAS 9.2 PROC SURVEY-
LOGISTIC (SAS Institute, 2008) to account for the sample design
for NASS-CDS. All analyses used weighted data, except where indi-
cated, and weights were trimmed at 5000 (mean weight = 314.0).
NASS-CDS is geographically divided into 12 strata and 27 probabil-
ity sampling units (PSUs), which were accounted for in all analyses.
Taylor series expansion was used to estimate standard errors.

Logistic regression is a maximum-likelihood method that has
been used in hundreds of studies of crash outcome (e.g., Hours et al.,
2010; Robertson and Vanlaar, 2008; Schiff et al., 2008). For a binary
response variable the linear logistic regression model, expressed
in terms of the logit transformation of the ith individual’s response
probability, pi (e.g., probability of severe injury), is a linear function
of the vector of explanatory variables or,

logit(pi) = log
[

pi

1 − pi

]
= b0 + b1x1 + · · · + bjxj + · · · + bnxn (1)

where j = 1, n for n predictor variables. The predictors can be cat-
egorical dummy variables or continuous measures. The negative
sign before the linear combination of predictors is arbitrary, but
produces a positive relationship between the sign of the coeffi-
cient and the direction of effect on risk. In other words, a positive
coefficient represents an increase in risk and a negative coefficient
represents a decrease in risk.

Solving for pi results in the individual probability of the risk of
the event of interest or

pi = 1
exp[−(b0 + b1x1 + · · · + bnxn)]

(2)

3.2. Outliers

For each analysis, we computed influence statistics typically
associated with logistic regression, including change in deviance
and the df betas. For one case, one or more of these statistics was
grossly out of line with other observations, and it was eliminated
from analysis. This will be discussed in the results.

3.3. Imputation

For most variables used in this analysis, missingness is rela-
tively minor. Of the 14,861 vehicles in the dataset, 159 were missing
driver belt status. Thirty vehicles were missing occupant age infor-
mation and an additional 31 included only records of occupants
who were 13 or under. Two were missing occupant gender. We
coded these vehicles as missing, leaving 14,673 cases. These miss-
ing cases represent such a small fraction of the total (1.4%) that
the method used to handle them (elimination vs. imputation) will
have little or no effect on the model estimates. In contrast, delta-V
is missing in 4667 cases, or 32%. Research in the statistical litera-
ture suggests that in analyses where a substantial portion of the
cases are missing a key variable, imputation will likely produce
estimates with smaller standard errors (Harrell, 2001; Steyerberg,
2009). However, Harrell (2001) does include the caveat that “if
the predictor of interest is the only variable having a substantial
number of missing values, multiple imputation is less worthwhile,
unless it corrects for a substantial bias caused by deletion of non-
randomly missing data.”

Table 1
Percent missingness for levels of key variables.

Variable Variable level Percent
missing delta-V

Delta-V 32.0%
Maximum injury level in vehicle ISS < 15 31.4%

ISS 15+ 36.8%

Number of impacts Single impact 29.2%
Multiple impacts 36.1%

Principal direction of impact Front 32.8%
Right 26.3%
Left 28.3%
Rear 35.5%

Vehicle type Car 31.4%
SUV 30.3%
Van 30.0%
Pickup 37.5%

It is somewhat unclear whether analysis of NASS-CDS data
will benefit from multiple imputation, and more importantly,
whether the resulting coefficient of delta-V will be unbiased. Few
researchers have explored this important issue, but Newgard and
Haukoos (2007) conducted simulations based on NASS-CDS and
concluded that multiple imputation of delta-V was beneficial. In
their paper, they simulated missingness of varying degrees for
delta-V as a first step in understanding the potential benefits of
multiple imputation. Missing delta-V values were chosen at ran-
dom with no relationship to other variables. However, in NASS-CDS,
missingness of delta-V is related to outcome, as well as other
variables, so it is unclear whether Newgard and Haukoos’ (2007)
results will extend to the more complex missingness scenario.
Table 1 gives the percent of missing delta-V cases for levels of
several key variables: crash direction, vehicle type, injury out-
come, and number of impacts. Differences in percent missing for
different levels are significant for all variables in Table 1. In par-
ticular, delta-V is missing in a higher percentage of cases with
severe injury, multiple impacts, rear and frontal impacts, and pick-
ups.

The patterns in Table 1 do not mean that relationships between
these variables cannot be estimated without imputation. Breslow
(1996) showed that parameter estimates other than the inter-
cept are unbiased even when the sample is biased (as it is here).
The relationships in Table 1 do indicate that imputation may be
warranted but would need to account for some of the effects of
not-completely-at-random missingness. Imputation would be jus-
tified if it results in a decrease in standard errors of the estimates
without biasing those estimates.

Following Harrell (2001), we used multiple imputation with SAS
9.2 PROC MI and MIANALYZE (SAS Institute, 2008). Missing values
of delta-V were imputed using the following variables: Maximum
occupant age in vehicle (continuous), maximum ISS in vehicle (con-
tinuous), vehicle type, crash direction, vehicle-level belt use (as
described earlier), number of impacts, and presence of female in
vehicle. We imputed 100 datasets for each analysis (i.e., missing
data were filled in 100 times to produce 100 complete datasets,
which were then analyzed using standard statistical procedures
(logistic regression) with the results of these analyses combined to
produce results used for statistical inference).

When we compared results for imputed and non-imputed
datasets, we found that the coefficient of delta-V was substan-
tially smaller for the imputed dataset. The resulting risk predictions
for most cases were lower as well. We were concerned that the
imputation model may have introduced additional variance to the
relationship between crash severity and injury that reduced the
strength of the delta-V coefficient. As a result, we elected to present
the model based on the complete-case dataset (no imputation),
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based in part on Harrell’s (2001) caveat described above. However,
we consider the question of the appropriateness of imputation of
delta-V in NASS-CDS to be important and still unanswered. To fur-
ther that discussion, we present our imputation results (process
and model) in Appendix A for reference.

3.4. Notification-case subset

In practice, EDRs are programmed to send notification only
when the crash circumstances reach a certain threshold. At present,
this threshold for OnStar® is either airbag deployment or a delta-V
of 15 mph or more. Other systems are likely to be similar, though
not identical. When these criteria are applied to the dataset, the case
count is reduced to 8679, or 59% of the original sample size. How-
ever, since the 41% of cases not reaching notification criteria are
necessarily low-speed impacts, the majority (85%) of injury cases
remain in the notification set. The notification cases better repre-
sent the real-world task of the model, so we limited our modeling
dataset to these cases.

3.5. Validation

Validation of any model is an important step in ensuring that the
model is likely to perform as expected in the field. While the split-
sampling approach (fitting a model to a ‘training’ dataset and using
the model to score a ‘validation’ dataset) is often used to validate
predictive models, this approach does not make efficient use of all
of the information contained in the dataset. Split-sample validation
results in the validation of a model fit to a “training” dataset, but it
does not validate the model fit to the complete dataset, the objec-
tive of a predictive model. Following Harrell (2001) we used the
entire sample (n = 14,861 observations) from all years (1999–2008)
to develop the predictive model of serious injury outcome. Using
SAS 9.2, validation of the final model was accomplished using the
BVAL SAS macro developed by Gonen (2007) for bootstrap vali-
dation of the full model receiver operating characteristic (ROC)
curve. This approach gives optimism-corrected estimates of the
area under the ROC curve along with other model performance
statistics. Optimism is defined as true performance minus appar-
ent performance, where true performance refers to the underlying
population of crash-involved occupants, and apparent performance
refers to the estimated performance in the sample (Steyerberg,
2009). Correction for optimism is important because the purpose of
the model is to predict serious injury risk for new subjects from the
entire population of crash-involved motor vehicle occupants. Many
efforts to validate predictive logistic regression models in a clini-
cal decision-making context rely upon simple split case analysis
where the dataset is divided into two separate datasets: a model
development or test dataset used to estimate model parameters
and their standard errors and a validation dataset produced by
scoring the validation dataset with the model developed using the
test data. This does not accomplish what is needed to objectively
and comprehensively validate the model since only the model
fit to the test data is validated while the model fit to the com-
plete dataset is reported as “the model”. The modern statistical
literature emphasizes the need for computationally intensive (e.g.,
bootstrap or jackknife) methods of model validation (Harrell, 2001).
The SAS BVAL macro developed by Gonen (2007) is one published
generic algorithm for implementing a bootstrap model validation
methodology. The authors are unaware of other motor vehicle epi-
demiologic studies that use similar model validation techniques,
although the medical statistical decision making literature contains
numerous examples of bootstrap validation (e.g., Steyerberg et al.,
2010; Weiser et al., 2008).

Fig. 1. Weighted distribution of delta-V (mph) for all cases. Lognormal fit is shown
in dotted lines.

4. Results

4.1. Univariate relationships with injury

Before using multivariate methods, we investigated the distri-
butions of predictors and looked at the univariate relationships
between each predictor and injury outcome (serious injury in vehi-
cle). This was done using all available cases, either in the original
set or the notification subset (as indicated). NASS-CDS weights were
used unless otherwise indicated.

Fig. 1 shows the distribution of delta-V for all cases, along with
a lognormal fit to the distribution. The distribution is fit well by
a lognormal distribution, so we used the natural log of delta-V
in modeling. Fig. 2 shows the distribution of delta-V for notifica-
tion cases, along with the lognormal fit. The second peak at around
15 mph reflects the shift from airbag-based notifications (with dV
less than 15 mph) to delta-V-based notifications. Fig. 3 shows the
relationship between delta-V and injury for all cases. Notification
cases are identical from 15 mph up, so the relationship is virtually
the same for these cases.

Table 2 contains the injury rates (based on weighted data) for
levels of each of the categorical predictors in the model for all cases
and notification cases only. Overall, the injury rate for notification
cases is 2.8%. Unadjusted injury rates in Table 2 generally follow
expected patterns. Higher unadjusted injury rates are associated
with: multiple impacts, vehicles with any unbelted occupants, pick-

Fig. 2. Distribution of delta-V (mph) across notification cases.
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Fig. 3. Proportion of vehicles containing one or more seriously injured occupants
(ISS 15+) as a function of delta-V. Only notification cases are used in this figure.

ups and cars, presence of a female occupant, vehicles with older
occupant(s), and right and left impacts.

5. Modeling

5.1. Notification cases

All of the cases with missing delta-V values were deleted and
the model fit to those 6625 observations that met notification crite-
ria (delta-V ≥ 15 mph or airbag deployment). The Pearson residual
and deviance residual outlier statistics were visually inspected, and
criteria for Pearson residual, deviance residual, deviance differ-
ence, and c-bar were used to identify extreme outliers. One case
exceeded these criteria, so the remaining number of cases used in
this model was 6624. Table 3 summarizes the full model parame-
ter estimates and associated standard errors obtained using the SAS
PROC SURVEYLOGISTIC procedure. The coefficients of the vehicle-
type variables were not significant (p > 0.05).

The following variables were used as references for their respec-
tive categories: cars for vehicle type, rear impacts for direction of
impact, any unbelted for vehicle belt use, single for number of events,
no for presence of older occupants and no for presence of females.

A measure of the discriminatory capability of the final model is
provided by the c-statistic or equivalently, for binomial responses,
the area under the ROC curve (AUC) as discussed in the previous
section on model validation. The AUC for the model using com-
plete case analysis is 0.85, suggesting that the model provides good
discriminatory capability. To test overall goodness-of-fit, we used
a variant of the Hosmer–Lemeshow test better suited for com-
plex sample survey data (Shah and Barnwell, 2003). To do this, we
divided the cases into deciles, based on predicted probability. For
each decile, we computed the expected number of injury cases,
based on the weighted average of predicted probability in each
decile. We then compared the observed weighted number of injury
cases in each decile to the expected number using a Rao–Scott chi-
square, which takes into account the survey design. This resulted
in a chi-square value of 12.14 (9 df), p = 0.2060, suggesting that the
overall fit is reasonably good across the range of predicted proba-
bilities.

Fig. 4 shows histograms of predicted probability of injury
for vehicles with and without seriously injured occupants. The
histograms indicate that the biggest benefit of the model is in iden-
tifying vehicles with very low probability of injury. Starting at a
value of about 0.05, the percent of injury cases with predicted
probability at each level is higher than the corresponding percent
of non-injury cases. A vertical reference line at 0.20 is included
to illustrate the Expert Panel’s probability cutpoint recommenda-
tion.

Figs. 5–8 show side-by-side predicted risk for different levels of
the predictors (with other predictors fixed). These graphs all use
the complete-case/notification model and are meant to illustrate
the nature and size of the main effects in the model. Fig. 5 illus-
trates the effects of age and gender on risk. As was clear from the
coefficients, the age effect is substantially larger than the gender
effect. For example, at 30 mph delta-V, compared to a vehicle with
all young males, a vehicle with at least one female is at about 50%
greater risk of having a seriously injured passenger. In contrast, a
vehicle with at least one male over 55 is at 150% greater risk. Note
that this risk should not be confused with the tendency of young
males to be in more severe crashes. The risks of injury illustrated
in Fig. 5 apply to crashes of equal severity. Table 4 summarizes the
percent change in the predicted probability of severe injury risk
associated with age and gender for the scenario described in Fig. 5.

Fig. 6 illustrates the effect of impact direction. The effect of direc-
tion is substantial, with left impacts producing the highest risk,
followed by right, frontal, and rear impacts. It should be noted that

Table 2
Injury rates for levels of key variables.

Variable Variable level Percent of vehicles with seriously injured
occupant(s) (notification cases only)

Number of impacts Single impact 2.2%
Multiple impacts 4.1%

Principal direction of impact Front 2.1%
Right 6.4%
Left 8.5%
Rear 1.6%

Vehicle type Car 2.9%
SUV 2.4%
Van 1.4%
Pickup 3.5%

Older occupant(s) (55+) No older Occs 2.3%
Older Occ present 5.2%

Female occupant(s) No females 2.6%
Female present 3.0%

Restraint use All belted 1.9%
Some unbelted 7.4%
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Table 3
Full model results using only notification cases (n = 6624).

Parameter Estimate Standard Error Wald chi-square Pr > ChiSq Odds ratio (Conf. Int)

Intercept −15.208 0.822 341.971 <0.0001
ln delta-V (mph) 3.603 0.329 119.718 <0.0001 36.69 (19.24, 69.95)

Direction of impact Front impact 1.089 0.488 4.981 0.0256 2.97 (1.14, 7.73)
Right impact 2.020 0.328 37.861 <0.0001 7.54 (3.96, 14.35)
Left impact 2.867 0.543 27.852 <0.0001 17.58 (6.06, 50.99)
Rear impact 0.000

Vehicle belt use All occupants belted −1.450 0.227 40.975 <0.0001 0.23 (0.15, 0.37)
Any occupants unbelted 0.000

Vehicle type Utility −0.203 0.220 0.855 0.3553 0.82 (0.53, 1.26)
Van −1.116 0.685 2.655 0.1032 0.33 (0.09, 1.25)
Pickup 0.167 0.411 0.166 0.6839 1.18 (0.53, 2.644)
Car 0.000

Number of events Multiple 0.639 0.184 12.027 0.0005 1.90 (1.32, 2.72)
Single 0.000

Presence of older occupants At least one 55+ 0.991 0.200 24.523 <0.0001 2.69 (1.82, 3.99)
No older occupants 0.000

Presence of females At least one female 0.450 0.174 6.715 0.0096 1.57 (1.12, 2.21)
No females 0.000

Table 4
Age and gender risk comparisons: Fig. 5 scenario.

Group Compared with % change in Pr(ISS 15+) to group

Young female Young male 54%
Old female Old male 49%
Old male Young male 154%
Old female Young female 146%

for a near-side occupant, right and left impacts result in similar
risk. However, because this model is at the vehicle level, a left-side
impact is always a near-side impact to the driver, whereas a right-
side impact may or may not result in a near-side impact. From the
point of view of triage, a left-side impact is a more serious crash and
substantially more likely to result in serious injury. Table 5 summa-
rizes the percentage change of the predicted probability of severe

Table 5
Impact direction risk comparisons: Fig. 6 scenario.

Groups Compared with % change in Pr(ISS 15+) to group

Front Rear 192%
Right Rear 600%
Left Rear 1375%

injury (ISS 15+) for frontal, left and right impacts relative to rear
impacts for the crash scenario described in Fig. 6.

Fig. 7 illustrates the effect of vehicle type, which was not signif-
icant. Although the curve for vans is below the others, the effect is
minor. Table 6 shows the percentage-wise changes in the predicted
probability of severe injury (ISS 15+) for vans, utilities and pickups
relative to cars for the crash scenario described in Fig. 7.

Fig. 4. Plots showing the distribution of predicted probability for vehicles without any seriously injured occupants (ISS < 15, above) and vehicles with seriously injured
occupants (ISS 15+, below); n = 6624. A vertical line shows the recommended cutoff of 0.2.
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Fig. 5. Four curves showing model predictions for having an older occupant (55+)
in a vehicle and having at least one female occupant on predicted risk as a function
of dV (mph). For this example, other variables are fixed at: car, single impact, frontal
impact, and all occupants belted.

Fig. 6. Four curves showing model predictions as a function of dV (mph) by direc-
tion of impact. For this example, other variables are fixed at: car, single impact, all
occupants belted, no females, and no older occupants.

Fig. 7. Four curves showing model predictions as a function of dV (mph) by vehicle
type. For this example, other variables are fixed at: single impact, front impact, all
occupants belted, no females, and no older occupants.

Table 6
Vehicle-type risk comparisons: Fig. 7 scenario.

Group Compared with % change in Pr(ISS 15+) to group

Utility Car −17%
Van Car −66%
Pickup Car 17%

Fig. 8. Four curves showing model predictions as a function of dV (mph) by number
of impacts and belt use. For this example, other variables are fixed at: car, front
impact, no females, and no older occupants.

Table 7
Belt use and multiple impact risk comparisons: Fig. 8 scenario.

Group Compared with % change in Pr(ISS 15+) to group

Belted single Belted multiple −46%
Unbelted single Unbelted multiple −42%
Belted single Unbelted single −74%
Belted multiple Unbelted multiple −72%

Finally, Fig. 8 illustrates the effects of number of impacts and
belt use in the vehicle. Although the number of impacts (single vs.
multiple) is a significant predictor of injury, the presence of even a
single unbelted occupant has a much greater effect on the proba-
bility that there will be a seriously injured occupant in the vehicle.
For example, at 30 mph, a single impact results in 46% lower risk
for a vehicle with all belted passengers relative to multiple impacts,
but having all belted passengers decreases the risk of serious injury
in a multiple-impact vehicle by about 72%. Table 7 summarizes the
percent change in predicted probability of severe injury (ISS 15+)
associated with age and gender for Fig. 8 crash scenario.

6. Validation

Since we want to maximize the model-development sample
size, we chose to use bootstrap validation to avoid the problems
of the split-sample approach (Gonen, 2007; Harrell, 2001). Table 8
summarizes the estimates of three common model performance
statistics: the area under the receiver operating characteristic
curve (AUC), the Somer’s “D” Statistic (DXY), and an adjusted R-
square measure (Nagelkerke’s R Square) for logistic regression.
For binary outcomes, the AUC and DXY statistics are related by:
AUC = DXY/2 + 0.5 and, as such, are redundant measures of model
performance. A logistic model with an optimism-corrected AUC
of greater than 0.80 has a reasonable capability of discriminating
between the two states of the binary outcome variable, ISS 15+
(Harrell, 2001).

7. Decision analysis and performance

Ultimately, the most important measure of the performance of
this decision algorithm is how well it distinguishes between vehi-
cles with seriously injured occupants and those without. Although
the algorithm produces a continuous value for probability of injury,
in practice, a cutpoint must be chosen to decide when to take action
(e.g., alert EMS to high probability of injury, move triage prior-
ity higher, or transport to Level 1 trauma center). Table 9 shows
the sensitivity (percent of positive tests out of all injury cases) and
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Table 8
Optimism-corrected model validation statistics using ) approach.

Estimate Optimistic estimate Optimism correction Optimism-corrected
estimate

AUC 0.8433 0.0027 0.8406
DXY 0.6865 0.0053 0.6812
Adjusted R-square 0.3360 0.0050 0.3310

Table 9
Sensitivity and specificity for full model by hypothetical probability cutpoints.

Probability cutpoint Sensitivity Specificity True positives per 1000 notifications False positives per 1000 notifications False negatives per
1000 notifications

0.05 0.717 0.888 20.08 108.86 7.92
0.1 0.547 0.947 15.32 51.52 12.68
0.2 0.396 0.983 11.09 16.52 16.91
0.3 0.282 0.992 7.90 7.78 20.10
0.4 0.204 0.995 5.71 4.86 22.29
0.5 0.150 0.998 4.20 1.94 23.80

Table 10
Average maximum vehicle ISS for four decision outcome categories.

Probability cutpoint Average ISS for true positives Average ISS for false negatives Average ISS for false positives Average ISS for true negatives

0.1 31.1 27.6 3.8 1.5
0.2 31.9 28.0 4.7 1.6
0.3 33.8 27.8 4.9 1.6

specificity (percent of negative tests out of all non-injury cases) for
a variety of possible cutpoints.

While sensitivity and specificity are key numbers for evaluat-
ing a decision algorithm, they do not take into account the relative
number of injury and non-injury cases that will be encountered in
the field. In the notification dataset, the overall probability of injury
is about 2.8%. Thus, there are about 35 times as many non-injury
cases as injury cases. Put another way, there are 35 times more
opportunities for false positives (cases that are given unnecessary
treatment) than true positives (cases that need treatment and are
detected). Higher sensitivity always goes with lower specificity and
results in more true positives at the expense of more false positives.
The three rightmost columns put the sensitivity and specificity of
each cutpoint in the context of the low base rates of injury. They
indicate the number of true positives, false positives, and false neg-
atives (missed opportunities) per 1000 vehicle notifications. These
numbers should most closely reflect the expected experience in the
field.

For example, out of 1000 vehicle notifications, about 2.8%, or 28
vehicles are expected to include a seriously injured occupant. With
a probability cutpoint of 0.2, sensitivity is 0.396, meaning that about
40% of these, or approximately 11 will result in a predicted proba-
bility of serious injury above 0.2. These are the true positives, and
the other 17 will result in false negatives. Of the same 1000 notifi-
cations, 972 will not contain a seriously injured occupant. With a
cutpoint of 0.2, the specificity is 0.983, meaning that about 1.7%, or
16.52 vehicles, will result in false positives.

Another way of putting the model performance into context is
to look at the average maximum ISS in a vehicle for each category
of decision. The algorithm is based on a two-category concept of
injury. However, a false positive that flags a vehicle containing an
occupant with ISS 14 would be considered far less problematic than
a false positive for a vehicle containing no occupants with any injury
at all. Similarly, missing a vehicle with an occupant with ISS 30 is a
“worse” miss than missing a vehicle with its worst-case ISS of 16.
To illustrate this, we compared cutpoints of 0.1, 0.2 (recommended
by the CDC) and 0.3.

Table 10 shows the average maximum vehicle ISS for the four
categories of decision and outcome for each of three cutpoints.
The key comparisons are between groups with the same out-

come and different decisions. For example, true positives and false
negatives encompass vehicles with one or more severely injured
occupants. In Table 10, the average ISS for true positives is con-
sistently higher than that for false negatives. In other words, the
injury level of misses is lower than those that are picked up by
the algorithm. Similarly, false positives and true negatives encom-
pass vehicles without a seriously injured occupant. For these, the
average maximum ISS is higher for the false positives, compared
to true negatives. Although the difference between these averages
(in both cases) is somewhat small (3 ISS units), the direction of
effect indicates that the more serious cases get identified more
readily by the algorithm and the least serious cases are more readily
rejected.

8. Conclusions

We have presented results of logistic regression analyses to pre-
dict the probability of a serious injury in a crash-involved vehicle,
following the approach laid out by the CDC Expert Panel on Field
Triage. These analyses are based on the information that may be
obtained using an EDR in a crash, or by an operator communicat-
ing with vehicle occupants immediately following a crash (age and
gender).

The results of these analyses are promising for the possibility
of initiating triage decisions using EDR-based crash information.
The AUC of 0.84 indicates significant discrimination by the algo-
rithm, though there is room for improvement. The key predictors
in this model are delta-V (log transformed), belt use, age (presence
of anyone 55 or older), and direction of impact. Additional limited
predictive value comes from multiple impacts and females present
in the vehicle. Vehicle type was not a significant predictor, though
it was left in the model to match the predictors given by the expert
panel.

8.1. Summary

We developed a triage prediction model based on NASS-CDS
data from 1999 to 2008 and following the guidelines laid out by
the CDC Expert Panel. Analysis was done at the vehicle level, rather
than the occupant level because EMS responds to a vehicle as a
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unit (though treatment is ultimately at the individual level). The
dependent measure was a binary variable indicating whether any
occupant of a vehicle had an Injury Severity Score (ISS) of 15 or
greater. Predictors included crash severity (delta-V), impact direc-
tion, vehicle type, belt use (coded as all belted vs. anyone unbelted),
number of impacts (single vs. multiple), age (coded as all under
55 vs. anyone over 55), and gender (coded as all male vs. anyone
female).

Logistic regression (accounting for NASS weights) was used to
predict the probability of a vehicle containing an occupant with
serious injury. The model fit reasonably well, and is particularly
effective at weeding out many of the cases with the least potential
for injury. The model itself predicts a continuous value of probabil-
ity of injury, so it is up to others to choose a cutpoint that would
be implemented in practice to differentiate between vehicles that
meet criteria and vehicles that do not. We have presented some
numbers to give context to different cutpoint choices. For exam-
ple, a cutpoint of 0.1 will result in more false positives and fewer
false negatives than a cutpoint of 0.3. However, the relative impor-
tance of these depends on costs that are outside the scope of this
paper. Ultimately, the model shows promise for using the EDR to
provide a fast first cut at identifying vehicles in injury-producing
crashes.

8.2. Scope of crash problem

The selection criteria used to obtain the study vehicle population
(airbag deployed or delta-V > 15, model year 2000+, planar crash)
resulted in 8679 observations, of which approximately 11.8% or
1026 vehicles had occupants with a reported ISS of 15 or greater.
When weighted, these represent 2.8% of the population of vehicles
in crashes meeting notification criteria. Annually, approximately
1.8 million vehicles are involved in planar crashes of at least 15 mph
delta-V. Thus, the problem of triage – finding the 2.8% of these that
need the most help – is significant.

8.3. Non-significant predictors

Vehicle type was not a significant predictor (p > 0.05) of ISS
15+ injury. The presence of one or more females was a signifi-
cant (p < 0.05) but weak predictor. Models fit without the Vehicle
type and presence of one or more female variables were similar, in
terms of such performance measures as AUC, sensitivity and speci-
ficity, to models that included these variables. From a statistical
perspective, it makes little sense to include predictor variables that
do not significantly contribute to the predicted outcome; however,
these variables were left in the final predictive model to satisfy the
preliminary requirements of the Expert Panel’s Recommendations.

8.4. Link from WinSmash to EDR

An important, but unverified, assumption in developing our pre-
dictive injury risk model is that the delta-V values for the principal
direction of force recorded in the NASS-CDS dataset correspond
to delta-V values for the principal direction of force recorded by
recent model-year EDR systems. While previous work to corre-
late EDR-recorded delta-V values with measured delta-V values
obtained from full frontal barrier tests indicates general agree-
ment between the two measurement systems (Gabler et al., 2003;
Niehoff and Gabler, 2006), additional studies are needed to more
fully explore the relationship between NASS-CDS and EDR derived
delta-V values. Significant biases or discrepancies between the
two systems would require a statistical adjustment in the delta-V
parameter.

8.5. Choice of cutpoint

The CDC Expert Panel’s initial recommendations for develop-
ment of an injury risk algorithm specified a probability cutpoint of
0.2 to identify cases that warrant consideration as possible severe
occupant injuries. This pre-specified probability cutpoint ignores
both the data and the final model. Decision cutpoints should be
data- and model-driven and capture the relative costs of both false
positives and false negatives. An arbitrary probability cutpoint,
even one specified from previous clinical experience to minimize
the probability of false positives, does not make good statistical
sense. Determination of the relative costs of both false positives and
false negatives should be decided by expert clinicians, public health
decision makers and other appropriate subject matter experts.

Our approach in presenting the results of the final predictive
model is to provide a summary of the relative numbers of both
types of errors associated with each of a range of possible decision
cutpoints. We recommend that the final determination of which
cutpoint to implement should be made by the public health deci-
sion maker community.

8.6. Future—data for recalibration

The current model, derived from NASS-CDS data, is an initial
effort to predict possible occupant severe injury risk in crashes that
exceed specific selection criteria (i.e., airbag deployed or delta-V
greater than 15 mph). The model is contingent upon the assump-
tion that each predictor variable in the NASS-CDS database can
be captured by the vehicle EDR system and possible additional
information that may be obtained via voice communication with
crash-involved vehicle occupants. This initial model needs to be
refined and continually recalibrated to reflect real world informa-
tion. In particular, it would be useful to have EDR information fully
incorporated into the NASS-CDS database. At present, unprocessed
EDR reports are only available for some cases.

8.7. Future—role of ACN in triage

One of the critical issues to resolve in incorporating the EDR
into the triage process is deciding what role the information and
any algorithm should play. At present, information about the state
of the vehicle and crash comprise the third tier of triage rules. Occu-
pants who do not meet physiological (e.g., consciousness and blood
pressure) or anatomical (e.g., broken bones) criteria for triage can
be transported solely on the basis of having been in a severely dam-
aged vehicle. These occupants may have sustained “silent/occult”
internal injuries and should be evaluated by a physician as a pre-
caution.

The EDR-based algorithm can play this same role, providing
EMS with a fast, automated estimate of the potential for injury
based solely on what happened to the vehicle. While this may be
convenient, the greatest potential benefit of an EDR-based triage
algorithm is in the speed with which the information is transmit-
ted to dispatch. If the EDR-based algorithm is treated as Step 0, i.e.,
a factor in the initial allocation of emergency resources, it could
provide substantial benefit in time savings and resource usage.

Appendix A. Multiple imputation

The SAS PROC MI and PROC MIANALYZE procedures were also
used to derive imputed delta-V values and analyze the combined
results obtained by multivariate logistic regression analysis of the
imputed full and notification datasets. Four outliers were removed
from the all-cases analysis and one outlier was removed from the
notification analysis.
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Table A1
Comparison of complete-case and MI analyses.

Parameter Notification cases (n = 6624) Notification cases MI (n = 8679)

Estimate Standard error Estimate Standard error

Intercept −15.208 0.822 −12.809 0.845
ln delta-V (mph) 3.603 0.329 3.016 0.244
Direction of impact Front impact 1.089 0.488 0.440 0.498

Right impact 2.020 0.328 1.451 0.468
Left impact 2.867 0.543 2.181 0.605

Vehicle belt use All occupants belted −1.450 0.227 −1.395 0.155
Vehicle type Utility −0.203 0.220 −0.175 0.188

Van −1.116 0.685 −0.744 0.570
Pickup 0.167 0.411 0.232 0.260

Number of events Multiple 0.639 0.184 0.414 0.224
Presence of older occupants At least one 55+ 0.991 0.200 0.951 0.160
Presence of females At least one female 0.450 0.174 0.434 0.195

Table A1 shows the comparison between complete-case anal-
yses and analyses of the imputed dataset for notification models.
Note that the MI standard errors are not smaller than the complete-
case analysis on average. In addition, both MI coefficients of log
delta-V are substantially lower than the complete-case coefficients.

Since multiple imputation appears to reduce estimates of pre-
dicted risk across the board, we were concerned that this might
be the result of bias due to variance introduced in the imputa-
tion model. In implementation, this model would tend not to reach
a given criterion as readily as the corresponding complete-case
model. In addition, the notification-data model should provide
more accurate estimates in the range of cases that are relevant
in practice. Since nearly 40% of the full dataset falls in a delta-V
range below notification, the full-data model will tend to be tuned
to injury risk in that (lower) portion of the curve. As a result of
these observations, we chose to focus all further investigation and
validation on the notification-data/complete-case model (Table 3).
However, we recommend further study of the potential benefits
and consequences of using multiple imputation with NASS-CDS
data.
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