EMS Response
Time Standards.

Time to move?

Ed Racht, MD
Chief Medical Officer
AMR Medicine
Associate Clinical Professor of Emergency Medicine
University of Texas Southwestern School of Medicine

Lee Turpen, CCEMT-P
Quality Improvement Manager
AMR
Chairman, State of Indiana EMS Commission
Evansville, Indiana
"We're not on a call. We just hit the lights to speed up the service."
EMS is a practice of medicine
Response interval.

The original clinical performance metric of an EMS practice of medicine
OUR OBJECTIVES…

• Describe the powerful historical role of response time standards in EMS
• Review the evidence of response time impact on patient outcome
• Discuss a patient centered approach for response time targets
• Encourage an evolution toward more pertinent outcome based metrics in EMS
• Present a case study of a clinical approach to monitoring a change in response time standards
A QUICK POLL…

- Response intervals in your system are clinically relevant?
- Response expectations are too stringent?
- Response expectations are too lenient?
- Had a role in response time standard determination
- Regularly review “outliers”?
- Break down response intervals by component / responding entity?
- Would feel comfortable increasing response expectations?
- Feel the public would perceive response change as negative?
The current EMS Climate

- **Science**
 - EBM in EMS
 - Research targeting OOH care
 - Significant procedural & cognitive evolution
 - Technology movement

- **Art**
 - Economic changes – Reimbursement focus
 - EMS subspecialty recognition
 - System design implications
 - Impact of EMS on the healthcare system
 - Transparency & accountability
THE IMPACT OF RESPONSE TIMES

- System design
 - Deployment strategy
 - Staffing
 - Communication plan
- Protocol implications
- Delivery & readiness costs
- Performance measurements
- Regulatory compliance
- Legal liability
Ambulance response times improve

New city-county EMS stations saving precious minutes

How to help salamanders: Seduction 101

Stage 2 water limits

Mandatory water use restrictions are in effect in Austin and other Central Texas communities. Watering is allowed only if your address ends in 2 or 7.

Emergency care comes faster in city, county
FATAL: Doctor says EMS delay likely made no difference
NFPA 1710

• “Standard for the organization and deployment of fire suppression operations, emergency medical operations, and special operations to the Public by career fire departments” 2010

• First Responder – 4 minutes / 90%

• ALS – 8 minutes / 90%
IT'S ALL ABOUT THE OUTCOMES

Quality organizations want hospitals to collect more data that focus on patients and outcomes rather than processes and payments.
"I think you should be more explicit here in step two."
Health Care: The Journal of Delivery Science and Innovation

Health Care: The Journal of Delivery Science and Innovation is a quarterly journal. The journal promotes cutting-edge research on innovation in health care delivery, including improvements in systems, processes, management, and applied information technology.

As a peer-reviewed publication, it aims to serve as a forum for the dissemination of ideas that improve patient care. The journal is committed to fostering productive dialogue amongst health professionals, policymakers, legislators, health services researchers, and academics.

The journal welcomes submissions of original research articles, case studies capturing "policy to practice" or "implementation of best practices", commentaries, and critical reviews of relevant novel programs and products.

Example topics include:

1. Care redesign
2. Applied health IT
3. Payment innovation
4. Organizational innovation
5. Quality improvement research
6. New training and education models
7. Comparative delivery innovation
8. Implementation and dissemination research

Editorial Board
The evidence.
DATA DEFINITION CHALLENGES

- Call received to PSAP
- Call entered
- Call dispatched
- Unit enroute (wheels moving)
- On scene (wheels stopped)
- At patient’s side
AVERAGE VS. FRACTILE METHODOLOGY
Focused on time of collapse to defibrillation
CPR initiation within 4 minutes
ALS with defibrillation within 8 minutes
Generalized response to all patients
EFFECT OF AMBULANCE RESPONSE TIMES ON CARDIAC ARREST SURVIVAL

- Scottish Ambulance Service
- Estimated the effect of reducing response times on survival
- 14 min / 90% fractile response
- All BLS-D ambulances

- Reducing response times from 14 – 8 minutes:
 - Increase survivors from 6% - 8%
 - Numerical modeling)

COMPARISON OF RESPONSE TIME & SURVIVAL

• Retrospective review – 6 month period
• 5424 patients in an urban EMS system transported to a Level I Trauma Center
• Patients categorized as Priority 1 (10:59) or 2 (12:59)
• Mean response times:
 • Survivors – 6.9 minutes
 • Non-survivors – 7.06 minutes

COMPARISON OF RESPONSE TIME & SURVIVAL

• Mortality:
 • 1.58% mortality risk for response intervals greater than 5 minutes
 • 0.51% mortality risk for response intervals less than 5 minutes

• Little evidence in these data to suggest that changing this system's response time specifications to times less than their current, but greater than 5 minutes, would have any beneficial effect on survival.

DOES PARAMEDIC RESPONSE TIME AFFECT PATIENT SURVIVAL?

- Retrospective cohort study of 9559 unselected patients transported to a single facility
- Multivariable logistic regression model applied to assess the effect of response time on survival controlling for age, gender, scene time, transport time, and 3 categories of condition severity
- Survival benefit identified in patients with response intervals less than or equal to 4 minutes
- No survival benefit in medical patients with non-arrest etiology

LACK OF ASSOCIATION BETWEEN PREHOSPITAL RESPONSE TIMES AND PATIENT OUTCOMES

Thomas H. Blackwell, MD, Jeffrey A. Kline, MD, J. Jeffrey Willis, MD, G. Monroe Hicks

ABSTRACT

Background. Limited data exist that examine the relationship between prehospital response times (RTs) and improved patient outcomes. Objective. We tested the hypothesis that patient outcomes do not differ substantially based on an empirically chosen advanced life support (ALS) RT upper limit of 10 minutes 59 seconds (10.99 minutes). Methods. This case-cohort prospective study was conducted in a metropolitan county with a population of 750,000 for the calendar year 2004. The emergency medical services (EMS) system is a single-responded, ALS-paramedic service that includes basic life support (BLS) first responders. The 90% fractile RT specification required by contractual agreement is 10.59 minutes or less for emergency, life-threatening (Priority I) calls. Cases (study patients), defined as Priority I transports with RTs exceeding 10.59 minutes, were compared with controls, which comprised a random sample of Priority I calls with RTs of 10.59 minutes or less. Prehospital.run reports and hospital outcomes were evaluated using explicit criteria by one observer for the primary outcomes of in-hospital death and secondary outcomes of critical interventions performed in the field. The test of the hypothesis was performed using the 95% confidence interval (CI) for difference in proportions with the 0.10 level of significance. Results. Of the 3,278 emergency transports in 2004, we identified 237 study patients (RT >10.59 min) and a random sample of 387 controls (RT ≤10.59 min). Survival to hospital discharge was 85% (76% to 94%) for study patients vs. 82% (77% to 85%) for controls, yielding a 95% CI for the difference of −0.5 to +1.4. ALS procedures were performed in 57% (CI, 43% to 71%) of study patients vs. 45% (40% to 51%) of controls (95% difference in proportions: −1.8 to +1.8). The most frequently performed procedures were administration of naloxone and intubation/intubation. Conclusions. Compared with patients who wait 10.59 minutes or less for ALS response, Priority I patients who wait longer than 10.59 minutes could experience a 6% increase and a 4% decrease in mortality, and do not have an increase in critical procedures performed in the field. Our data are most consistent with the inference that neither the mortality nor the frequency of critical procedural interventions vary substantially based on this proscribed ALS RT. Key words: emergency medical services, reaction time, outcome assessment (health care), ambulance, prehospital.

PREHOSPITAL EMERGENCY CARE 2009;13:444-450

INTRODUCTION

The provision of optimal emergency medical services (EMS) care in the prehospital environment requires integration of multiple operational and clinical components undertaken by many persons from different sites. Call taking and dispatching, scene response, on-scene patient care, triage and hospital destination decisions, continuing care during transport, and transfer to definitive care are all factors subject to online and off-line medical direction. Ambulance response time represents a high-profile target for potential process improvement. It remains self-evident that response time represents an important performance indicator, but taken alone, it does not completely predict outcome of disease severity or mortality. While prior research has evaluated the effectiveness of response time by various levels of care provision, there are limited studies that have examined the relationship between prehospital response times and patient outcomes. The purpose of this study was to examine the EMS response times, clinical care provided, and patient outcome for high-acuity 9-1-1 calls that occurred in an urban metropolitan jurisdiction to determine whether the current response time specifications set for the community are safe. As such, this report concerns the relationship between the duration of time defined by the period measured between a call received at the 9-1-1 dispatch center, arrival of an ambulance at the scene, and outcome of the patient. We further tested the hypothesis that patient outcomes do not differ substantially based on an explicitly chosen advanced life support (ALS) response time specification.

METHODS

We studied a cohort of EMS-transported patients. The data for this report were obtained by structured, secondary review of explicitly recorded data from EMS transport reports, which were collected as part of a larger program.
ASSOCIATION BETWEEN RESPONSE TIMES AND PATIENT OUTCOMES

- Case controlled retrospective analysis – 2004
- Priority 1 calls (10:59)
- Comparison of cases (patients exceeding 10:59) vs. controls (random sample of patients within 10:59)
 - 373 patients in each group
- Primary outcome = in-hospital death
- Secondary outcome = critical field intervention

ASSOCIATION BETWEEN RESPONSE TIMES AND PATIENT OUTCOMES

• Survival to hospital discharge:
 • Cases – 80% (95% CI: 76% to 84%)
 • Controls – 82% (95% CI: 77% to 85%)

• Critical field procedures:
 • Cases - 47.7% (95% CI: 43% to 53%)
 • Controls - 45.4% (40% to 51%)

• No evidence of increased mortality for priority patients where ALS response time exceeded 10:59 minutes.

EMS RESPONSE TIME AND MORTALITY

- One-year retrospective cohort study of adults with a life-threatening event as assessed at the time of the 9-1-1 call (MPDS Echo or Delta)
- All-cause mortality at hospital discharge
- 7760 responses evaluated

EMS RESPONSE TIME AND MORTALITY

- Mortality:
 - > 8 minutes – 7.1%
 - < 7:59 minutes – 6.4%

- Adjusted odds ratio of mortality for ≥8 minutes was 1.19 (95% CI: 0.97, 1.47)

EMS RESPONSE TIME AND MORTALITY

“These results call into question the clinical effectiveness of a dichotomous 8-minute ALS response time on decreasing mortality for the majority of adult patients identified as having a life-threatening event at the time of the 9-1-1 call. However, this study does not suggest that rapid EMS response is undesirable or unimportant for certain patients. This analysis highlights the need for further research on who may benefit from rapid EMS response, whether these individuals can be identified at the time of the 9-1-1 call, and what the optimum response time is”

...and by the way.
Perception...
ACTUAL VS PERCEIVED EMS RESPONSE TIME

• Convenience sample of EMS transported patients
• Survey
 • Response time
 • Scene time
 • Definitive care
 • Expectations

Harvey, et. Al. Prehosp Emerg Care 1999 Jan-Mar;3(1):11-4
ACTUAL VS PERCEIVED EMS RESPONSE TIME

• Compared to actual intervals:
 • Overestimate response times (12.4 v 9.1)
 • Underestimate on scene (9.1 v 12.4)
 • Underestimate time to definitive care (29.4 v 35.0)
 • Actual response times often meet patient expectations (although perceived not)

Harvey, et. Al. Prehosp Emerg Care 1999 Jan-Mar;3(1):11-4
How do we evaluate the clinical impact of change?
RAPID ACUTE PHYSIOLOGY SCORE

- Developed and tested as a severity score for critical care transports
- Abbreviated version of APACHE II using only parameters available in the field
- Pulse, B/P, RR, GCS
- Scoring 0 (normal) to 16
The Rapid Acute Physiology Score

KENNETH J. RHEE, MD,* CHARLES J. FISHER, JR., MD,† NEIL H. WILLITS, PhD,

The Rapid Acute Physiology Score (RAPS) was developed and tested for use as a severity score in the critical care transports. RAPS was an abbreviated version of the Acute Physiology and Chronic Health Evaluation (APACHE) II scoring system and included only parameters readily available on all transported patients, i.e., pulse, blood pressure, respiratory rate, and Glasgow Coma Scale. RAPS has a range from 0 to 14. Two hundred eighty-three patients were transported by helicopter, and 100 patients were transported by ambulance. The mean RAPS score for all patients was 6.9 (SD = 4.2). The median RAPS score was 4.0 (IQR = 3.0). The area under the receiver operating characteristic curve for RAPS was 0.77 (95% CI = 0.69, 0.85). The RAPS score was not significantly different between patients transported by helicopter and those transported by ambulance (p = 0.29).

METHODS

RAPS was assessed in two different settings: at the time of the transport and at the receiving hospital. The RAPS score was calculated using the APACHE II score as a baseline. The RAPS score was then compared with the APACHE II score to determine the area under the receiver operating characteristic curve. The RAPS score was found to be highly correlated with the APACHE II score (r = 0.77, p < 0.001). The RAPS score was also found to be a significant predictor of mortality when compared to the APACHE II score (p = 0.001).

CONCLUSIONS

RAPS was found to be a valid and reliable severity score in critical care transports. It is a useful tool for the evaluation of patients transported by helicopter or ambulance. RAPS can be easily calculated using a portable laptop computer or a handheld calculator. RAPS can also be used to predict mortality or to determine the need for additional resources.

Key Words: Acute Physiology and Chronic Health Evaluation, critical care transport, helicopter, Rapid Acute Physiology Score, severity score.
Based on Rhee’s Work

$$y = 0.0000x^6 - 0.0009x^5 + 0.0304x^4 - 0.3320x^3 + 0.7168x^2 - 2.3529x + 95.9946$$

$$R^2 = 0.9998$$

<table>
<thead>
<tr>
<th>RAPS</th>
<th>Survival %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>1</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td>89</td>
</tr>
<tr>
<td>4</td>
<td>83</td>
</tr>
<tr>
<td>5</td>
<td>77</td>
</tr>
<tr>
<td>6</td>
<td>69</td>
</tr>
<tr>
<td>7</td>
<td>58</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>38</td>
</tr>
<tr>
<td>10</td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
</tr>
</tbody>
</table>
Emergent procedure / returns by RAPS
2006-2008
750,000 Patients
Data

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Database 11-1-06 to 10-31-08</td>
<td>1,077,666</td>
</tr>
<tr>
<td>Remove non emergent calls</td>
<td>-423,679</td>
</tr>
<tr>
<td>Emergent to Scene</td>
<td>653,987</td>
</tr>
<tr>
<td>Remove Non Transported Calls</td>
<td>-142,404</td>
</tr>
<tr>
<td>Transported</td>
<td>511,583</td>
</tr>
<tr>
<td>Record Number used in Report</td>
<td>269,364</td>
</tr>
</tbody>
</table>
Initial-Ending RAPS by Response Time – All Calls
Evansville, Indiana

- City Population 117,429 (2010)
- MSA Population 350,261
- 40.7 Square Miles
- 44 Paramedics, 41 EMTs
- 28,000 calls / year
The Story

• “Costs must be decreased.” – Local Government

• Can we lengthen response times and do no harm?

• How do we answer the question?

• The RAPS option

• The First Response Protocol
 – Initially cardiac arrest and unconscious
The Proposal

- Lengthen response time requirement (October 09)
 - Decrease unit hours deployed
 - Increased first response to EMD Echo / Delta

- Use RAPS as the alert mechanism to system degradation
 - One Standard Deviation

- Create clinical oversight board

- All clinical participants a part of the initiative
Priority Drill Down

All Patients - Priority 1 - Initial RAPS

RAPS

Date/Time/Period

Aug-09 Oct-09 Dec-09 Feb-10 Apr-10 Jun-10 Aug-10 Oct-10 Dec-10

UCL

CL

RAPS

6.64

2.20
Priority Drill Down

All Patients - Priority 1 - Ending RAPS

RAPS

Date/Time/Period

Aug-09 Oct-09 Dec-09 Feb-10 Apr-10 Jun-10 Aug-10 Oct-10 Dec-10

5.56 UCL
1.68 CL
0
1
2
3
4
5
6
By Super Group
Response Time Overlay

RESP Time Vs. RAPS Initial (Patient Contact)
Response Time Overlay

Response Times vs. RAPS Ending (At Hospital)
ROSC During Data Collection

ROSC Control CHART - JAN 2009 to MAY 2012

Month

Percent ROSC by Month

Contract Start

Cardiac Arrest Protocol Change
Findings...

• The impact of changing response intervals can be prospectively evaluated using historical data.

• The impact of changing response intervals can be monitored using ongoing data.

• Response intervals in Evansville were safely increased with no impact on system-wide physiologic parameters.
WHERE TO?
EMS Makes a Difference:
Improved clinical outcomes and downstream healthcare savings

A Position Statement of the National EMS Advisory Council

December 2009
EVIDENCE-BASED PERFORMANCE MEASURES FOR EMERGENCY MEDICAL SERVICES SYSTEMS: A MODEL FOR EXPANDED EMS BENCHMARKING

A STATEMENT DEVELOPED BY THE 2007 CONSORTIUM U.S. METROPOLITAN MUNICIPALITIES’ EMS MEDICAL DIRECTORS (APPENDIX)

J. Brent Myers, MD, MPH, Corey M. Skovis, MD, Marc Eckstein, MD, MPH, Jeffrey M. Goodloe, MD, S. Marshall Isaac, MD, James R. Lollin, MD, C. Crawford Mechem, MD, Neal J. Richmond, MD, Paul E. Pepe, MD, MPH

ABSTRACT

There are few evidence-based measures of emergency medical services (EMS) system performance. In many jurisdictions, response-times intervals for advanced life support units and prehospital transport times for victims of cardiac arrest are the primary measures of EMS system performance. The association of the former with patient outcomes is not supported explicitly by the medical literature, while the latter focuses on a very small proportion of the EMS patient population and thus does not represent a sufficiently broad selection of patients. While these metrics have their place in performance measurements, a more robust method to measure and benchmark EMS performance is needed. The 2007 U.S. Metropolitan Municipalities’ EMS Medical Directors’ Consortium has developed the following model that encompasses a broader range of clinical situations, including myocardial infarction, respiratory failure, status epilepticus, and trauma. Where possible, the benefit conferred by EMS interventions is presented in terms of the number needed to treat. It is hoped that utilization of this model will serve to improve system design and deployment strategies while enhancing the benchmarking and sharing of best practices among EMS systems.

Key words: emergency medical services; paramedics; performance improvement; quality assurance; evidence-based medicine; STEMI acute myocardial infarction; asthma; pulmonary edema, status epilepticus

PREHOSPITAL EMERGENCY CARE 2008:12:141-151

INTRODUCTION

Evidence-based clinical measures of emergency medical services (EMS) system performance have been few in number, largely due to the limited quantity and quality of research committed to the prehospital arena.1-4 Although there is a 9-1-1 call for EMS response every second in the United States, and despite the fact that survival from acute illnesses and injuries are determined in that prehospital setting, evidence for out-of-hospital emergency care procedures are clearly lacking.5-9 This paucity of prehospital research is due to a number of factors, including the relatively young age of EMS as a distinct field of medical care, difficulties in terms of obtaining informed consent and accurate data collection in the prehospital environment, lack of targeted funding, the small number of dedicated EMS-focused researchers, inconsistencies in investigational protocol compliance, and actual or perceived resistance to participation in research by EMS personnel and receiving facilities.2-4

In the absence of a distinct body of literature evaluating the full spectrum of medical interventions provided in the prehospital setting, EMS performance measures have been limited to the relatively few benchmarks that have been established scientifically, such as survival from out-of-hospital cardiac arrest.2-5 Although treatment of cardiac arrest represents a major function of most EMS systems, it only constitutes a small fraction (1-2%) of all EMS responses. Lacking data, other performance standards generally have been based on measures of nonclinical endpoints and inconclusive, surrogate clinical markers, such as response intervals and training standards. In most cases, crude measures of stakeholder satisfaction (surveys) and other anecdotal measures are utilized to judge the performance of EMS systems.3
The Clinical Impact areas
(we can make a difference and we aren't doing everything we can)

- Cardiac Arrest / Resuscitation
- Evaluation and Management of SOB
- Airway Management
- Significant Trauma
- Ischemic Syndromes (STEMI / Stroke)
- Evaluation & Management of Pain & Discomfort
- Patient Safety
EMSA board discussing increasing ambulance response times

TULSA, Okla. -- EMSA is looking into increasing its response time standard starting in 2013. The issue was discussed for the first time by its board of trustees in yesterday's regular board meeting.

The potential changes would increase response time to life-threatening emergencies from 6 minutes, 59 seconds to 10 minutes, 59 seconds. Non-life threatening emergencies would increase from 12 minutes, 59 seconds to 14 minutes, 59 seconds.

The recommended change would not affect first responders who are required to be on the scene within five minutes.

The change was discussed as part of the board's review of an upcoming Request for Proposal (RFP) which will be issued in November to solicit bidders for its emergency medical services contractor. EMSA contracts with and oversees a private contractor which staffs the organization with EMS and clinical personnel.

The change is proposed in response to a study issued this year by the OU Community School of Medicine and agreed upon by the Medical Control Board which oversees EMSA's clinical care.

The RFP is scheduled for final discussion and vote by the board of trustees in its September board meeting. If the recommended change is made after consideration of the bids, the change would go into effect in November 2013.
The recommended changes would have no impact patients
There is no effect to a person’s health or death rate of an ambulance arriving in nine minutes, as they do now, or 11 minutes.

This is true for trauma patients as well as medical patients, even in the cases of serious life-threatening emergencies such as cardiac arrest.

Response times have been studied extensively over the last decade. The industry best practice is moving toward the extended response times in many areas.

Clinical outcomes or mortality rates, in relationship to response time, are most affected by patient care starting within the first five minutes. This is why we have a robust system of 911 dispatchers who give pre-arrival instructions and first responders who are required to respond within the five minutes.

The recommended changes are based on clinical data, not financial
The change is based solely on evidence-based clinical data. It is a more clinically efficient and safer way for us to respond to emergency calls. The recommended change will also allow for a safer driving response which is a critically important safety issue for EMS personnel and citizens.

All of the proposed clinical changes, including the response time, were made at the recommendation of the Medical Control Board and the OU School of Community Medicine study.

We don’t know the financial impact right now. We will be asking bidders to bid using both response times, the current ones and the recommended ones.

Our sole intention with the RFP and bidding process, as always, is to purchase the best quality of patient care that we can at the most fiscally responsible price.
EMS is a practice of medicine
THANKS.

THIS WAS A PRIVILEGE FOR US...